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The elastic continuum theory of nematic liquid crystals is used to show that the periodicity of the walls that
are observed above the critical Frederick’s field in nematic liquid crystals is closely related to the dimension-
ality of these structures, and that thep symmetry of the director and the fluid flow mechanism, usually
regarded as responsible for these walls, are not enough to fully explain the observed periodicity.
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The observation of periodic structures in liquid crystal
systems is commonplace@1#. Sometimes such structures
arise where we do not expect to find them@2#. Some nonlin-
ear and unstable systems show metastable, but periodic, con-
figurations. The periodic unidimensional walls of the nem-
atic liquid crystals~NLC! are examples of such structures
@3#. Even being nonlinear and unstable, they have attracted
the attention of a broad audience that studied them for many
years @3–8#. In this work we will give a mathematically
simple and general demonstration of a profound connection
between the periodicity of these nematic structures and its
dimensionality. In spite of the fact that such systems have
been widely studied, we believe that this important connec-
tion has not been put into evidence.

When a previously uniformly oriented sample of NLC is
submitted to a magnetic field perpendicular to the direction
of the director, it tends to bend to the direction of the mag-
netic field if the field is greater than a critical fieldHc , which
defines Frederick’s threshold@9#. For many compounds it is
observed that this bending is not uniform along the sample.

Due to thep symmetry (nW and2nW are equivalent! in some
regions of the sample the director presents a clockwise bend-
ing, and in other regions it presents a counterclockwise bend-
ing. In the regions of the space where the director links these
two configurations, turning from one to the another, we say
that there is a wall. As soon as we turn on the external
magnetic field, these walls appear as a one-dimensional array
perpendicular to the external magnetic field@10–15#.

Recently it has been shown that the behavior of the wave-
length of the periodic distortion (l) can be properly under-
stood if an interaction is assumed between these walls@16#.
In that work, motivated by the fact that the one-dimensional
array of walls appears to us a sequence of equidistant lines
crossing the sample along they axis ~the axis of the external
magnetic field!, it was assumed that these walls form a peri-
odic structure along thex axis. But why is this so? Why is a
nonperiodic sequence of walls not shown by the system? The
answer is clearly related to another question: why does the
system not show a homogeneous alignment in all of the
sample? These questions are usually answered grasping two
fundamental points. The first one, and the more important, is

thep symmetry. The other one is a fluid flow that generates
a nonuniform rotation pattern of the director which rein-
forces opposite rotations of neighboring regions of the
sample leading to an effective lower viscosity of the matter
movement which forms the walls in relation to the viscosity
of the matter movement which forms the homogeneous
alignment @3#. Even when we claim this beautiful mecha-
nism, the question about the origin of the periodicity is not
completely answered because it must be assumed at the be-
ginning. So, we should ask: why does a nonperiodic, but
oscillating, pattern of the director not show an even lower
viscosity? As we will show, the answer to this question tran-
scends thep symmetry and the fluid flow mechanism. It lies
in a simple feature of the system that is beyond these prin-
ciples: its dimensionality.

It is usual to divide the walls’ kind in splay, twist, and
bend, according to the geometry and the term of the Frank
free energy which dominates its configuration@1#. But irre-
spective of the walls’ kind that we consider, we always find
the same mathematical structure@5#. Without losing the gen-
erality, we will choose here a particular geometry for our
analysis. To do this, we consider a slab with dimensionsa
along thex axis,b along they axis, andd along thez axis,
in such a way thata@b@d. The director was previously
prepared in such a way that it is initially uniformly aligned
along thex axis and strong boundary conditions, with the
usual boundary conditions ofu(x,y,z) at the sample’s edge,
assumed@1#. The external controlled magnetic fieldH is ap-
plied along they axis.

With this geometry we suppose that the components of
the director can be expressed by

nx5cosu~x,y,z!, ny5sinu~x,y,z!, nz50, ~1!

whereu(x,y,z) is the angle between the directornW and the
x axis direction.

The expression of the free energy density in the two elas-
tic constant approximations (K15 K3), taking into account
the magnetic field coupling, is@1,5#
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whereK1 , K2 , andK3 (5K1) are, respectively, the elastic
constants of splay, twist, and bend, andV is the volume of
the system. Since we are dealing with a one-dimensional
structure that spreads along thex axis, the function
u(x,y,z), which represents the spacial configuration of direc-
tor nW , can assume the form

u~x,y,z!5h~x!sinS py

b D sinS pz

d D , ~3!

for 0<x<a, 0<y<b, 0<z<d, where h(x) is the
configuration of the nematic structure along thex axis.
With these replacements and with the approximation
sin2u'u222/3!u4 in the last term of Eq. ~2!, and
assuming that xaHc
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21K2(p/d)
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258/3, we arrive at
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andã5A(xaHc
2)/K3 a. Observe that the free energy density

F does not have any particular constant that characterizes the
actual system. The elastic constants, the critical field, and
sample dimensions have been put aside. Therefore the result-
ing equation forh(t) will be, save for the geometry, com-
pletely independent of the NLC sample and, ash is the ratio
between the actual magnetic fieldH and the critical Freder-
ick’s field Hc , the equation for the fieldh(t) describes a
kind of equation of corresponding states for walls@17#,
which assumes the form

] t
2h2~12h2!h2

3

8
h2h350, ~5!

with the boundary conditionsh(0)5h(ã)50. In his work
about the mathematical structure of the nematic walls, Bro-
chard@5# found, save for the constants, exactly this equation
and solved it for one wall. It is important to observe that this
equation does not only describe the geometry of the twist
walls. As can be seen in the work quoted above, all the walls
can be reduced to this mathematical form. The multiwall
integration of Eq.~5! is a difficult task@18#, but it is easy to
find the integration’s constant associated with it, which is
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h2h4. ~6!

We will use this equation to show that if there is any
oscillatory solution of Eq.~5! it will necessarily be a periodic
solution. So, supposing that it admits an oscillatory solution,
it follows that there will be a set of points
S5$t1 ,t2 ,t3 , . . . % for which h(t1)5h(t2)5h(t3)5•••

50. So, at each point of this set, we have

C5 1
2 ~] th!2/ t5t i

, t iPS. ~7!

Therefore, for any two distinct pointst i and t j of the set
S we have

] th/ t5t i
56] th/ t5t j

. ~8!

Let tbPS be the closest point totaPS for which we have
simultaneously

h~ ta!5h~ tb!50

and

] th/ t5ta
5] th/ t5tb

. ~9!

Using Eq.~5! and the equations above, we can compute
the second derivative ofh(t) and find that it assumes the
same value at these two points. That is,] t

2h/ t5ta

5] t
2h/ t5tb

. We can continue this process and compute, us-

ing Eq.~5!, then order derivative ofh(t) at these points. For
example, for the third-order derivative ofh(t) we get
] t
3h5(12h2)(] th)1

9
8h

2h2(] th), and using Eq.~9! we
conclude that] t

3h/ t5ta
5] t
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. In this way, for anyn, we

will always arrive at

] t
nh/ t5ta

5] t
nh/ t5tb

. ~10!

Now, as at pointsta and tb , the functionh(t) and all its
derivatives assume the same values we see, using a Taylor
series argument, that for any«, h(ta1«)5h(tb1«). Set-
ting tb2 ta5P, we obtainh(ta1«)5h(ta1«1P). And,
due to the fact that the equality in Eq.~10! is independent of
the ordern, we do not have any limit for« and can set
t5ta1« to obtain

h~ t !5h~ t1P!, ~11!

which is exactly the definition of a periodic function with
periodP5 tb2ta .

The cornerstone of this demonstration is Eq.~6!, and to
arrive at it we have made some simplifications, upon which
we now comment. We assumed strong anchoring boundary
conditions, but we did not use them in our demonstration.
They only had the role of being an easy way of obtaining the
one-dimensional Eq.~4!. So, the exact way by which the
molecules touch the edges of the sample seen to be not im-
portant for our conclusion, because the condition that the
functionh(t) vanishes at the setS, follows directly from the
fact thath(t) was supposed to be an oscillatory function. We
have also used the two elastic constant approximations
(K15 K3). Again this was done in the name of simplicity of
the resulting equation. If we do not assume the two elastic
constant approximations, Eq.~4! would result in a tanta-
mount and awkward equation that, with the use of Eq.~3!,
could also be put in the form of a one-dimensional expres-
sion for the free energy. Finally we have assumed that the
last term in Eq.~2!, the sin2u term, can be expanded in a
polynomial approximation. If this simplification procedure
were not used, Eq.~5! would have a cumbersome form, but a
constant of integration would follow in the same way. There-
fore, we conclude that the key to understanding the period-
icity of the walls is its one-dimensional character, which we
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used when we stated Eq.~3!, and which has allowed us to
construct the constant of integration given in Eq.~6!. It is
important to observe that this kind of constant of integration,
which imitates the energy in mechanical problems, can only
be found for one-dimensional functionals@19# and these pe-

riodic walls are unstable structures which decay in closed
bidimensional walls that, of course, do not present any peri-
odicity in their distribution along the sample. This fact is
therefore strong, and pleasing, evidence of the relation be-
tween their periodicity and their dimensionality.
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